>百科大全> 列表
请讲解一下对数的历史,在科学上的用途
时间:2025-05-02 15:21:33
答案

;在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家――纳皮尔男爵。

;在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。

可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间

纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数。

;当然,纳皮尔所发明的对数,在形式上与现代数学中的对数理论并不完全一样。

在纳皮尔那个时代,“指数”这个概念还尚未形成,因此纳皮尔并不是像现行代数课本中那样,通过指数来引出对数,而是通过研究直线运动得出对数概念的。

那么,当时纳皮尔所发明的对数运算,是怎么一回事呢?在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法。

纳皮尔的这种计算方法,实际上已经完全是现代数学中“对数运算”的思想了。

回忆一下,我们在中学学习“运用对数简化计算”的时候,采用的不正是这种思路吗:计算两个复杂数的乘积,先查《常用对数表》,找到这两个复杂数的常用对数,再把这两个常用对数值相加,再通过《常用对数的反对数表》查出加和值的反对数值,就是原先那两个复杂数的乘积了。

;经过多年的探索,纳皮尔男爵于1614年出版了他的名著《奇妙的对数定律说明书》,向世人公布了他的这项发明,并且解释了这项发明的特点

;所以,纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊荣。

伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发明。

法国著名的数学家、天文学家拉普拉斯曾说:对数,可以缩短计算时间,在实效上等于把天文学家的寿命延长了许多倍。

推荐
© 2025 雅普电脑网